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Introduction

Probability Theory,
Part 1

Let’s assume we understand the nature of the system or mecha-
nism that produces the uncertain events in which we are in-
terested. That is, the probability of the relevant independent
simple events is assumed to be known, the way we assume we
know the probability of a single “6” with a given die. The task
is to determine the probability of various sequences or combi-
nations of the simple events—say, three “6’s” in a row with
the die. These are the sorts of probability problems dealt with
in this chapter.

The resampling method—or just call it simulation or Monte
Carlo method, if you prefer—will be illustrated with classic
examples. Typically, a single trial of the system is simulated
with cards, dice, random numbers, or a computer program.
Then trials are repeated again and again to estimate the fre-
quency of occurrence of the event in which we are interested;
this is the probability we seek. We can obtain as accurate an
estimate of the probability as we wish by increasing the num-
ber of trials. The key task in each situation is designing an ex-
periment that accurately simulates the system in which we are in-
terested.

CHAPTER

4
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This chapter begins the Monte Carlo simulation work that cul-
minates in the resampling method in statistics proper. The
chapter deals with problems in probability theory—that is, situ-
ations where one wants to estimate the probability of one or
more particular events when the basic structure and param-
eters of the system are known. In later chapters we move on
to inferential statistics, where similar simulation work is known
as resampling.

Definitions

A few definitions first:

Simple Event: An event such as a single flip of a coin, or one
draw of a single card. A simple event cannot be broken down
into simpler events of a similar sort.

Simple Probability (also called “primitive probability”): The
probability that a simple event will occur; for example, that
my favorite football team, the Skins, will win on Sunday.

During a recent season, the “experts” said that the Skins had a
60 percent chance of winning on Opening Day; that estimate
is a simple probability. We can model that probability by put-
ting into an urn six green balls to stand for wins, and four red
balls to stand for losses. (Or we could use 60 and 40 balls, or
600 and 400). For the outcome on any given day, we draw one
ball from the urn, and record a simulated win if the ball is
green, a loss if the ball is red.

So far the urn has served only as a physical representation of
our thoughts. But as we shall see shortly, this representation
can help us think clearly about the process of interest to us. It
can also give us information that is not yet in our thoughts.

Estimating simple probabilities wisely depends largely upon
gathering evidence well. It also helps to skillfully adjust one’s
probability estimates to make them internally consistent. Esti-
mating probabilities has much in common with estimating
lengths, weights, skills, costs, and other subjects of measure-
ment and judgment.

Composite Event: A composite event is the combination of two
or more simple events. Examples include all heads in three
throws of a single coin; all heads in one throw of three coins at
once; Sunday being a nice day and the Skins winning; and the
birth of nine females out of the next ten calves born if the
chance of a female in a single birth is .48.
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Compound Probability: The probability that a composite event
will occur.

The difficulty in estimating simple probabilities such as the
chance of the Skins winning Sunday arises from our lack of
understanding of the world around us. The difficulty of esti-
mating compound probabilities such as the probability of it be-
ing a nice day Sunday and the Skins winning is the weakness
in our mathematical intuition interacting with our lack of un-
derstanding of the world around us. Our task in the study of
probability and statistics is to overcome the weakness of our
mathematical intuition by using a systematic process of simu-
lation (or the devices of formulaic deductive theory).

Consider now a question about a compound probability: What
are the chances of the Skins winning their first two games if
we think that each of those games can be modeled by our urn
containing six red and four green balls?  If one drawing from
the urn represents one game, a second drawing should repre-
sent the second game (assuming we replace the first ball drawn
in order to keep the chances of winning the same for the two
games). If so, two drawings from the urn should represent two
games. And we can then estimate the compound probability
we seek with a series of two-ball trial experiments.

More specifically, our procedure in this case—the prototype
of all procedures in the resampling simulation approach to
probability and statistics—is as follows:

1. Put six green (“Win”) and four red (“Lose”) balls in an urn.

2. Draw a ball, record its color, and replace it (so that the prob-
ability of winning the second simulated game is the same as
the first).

3. Draw another ball and record its color.

4. If both balls drawn were green record “Yes”; otherwise
record “No.”

5. Repeat steps 2-4 a thousand times.

6. Count the proportion of “Y”’s to the total number of “Y”’s
and “N”’s; the result is the probability we seek.

Much the same procedure could be used to estimate the prob-
ability of the Skins winning (say) 3 of their next 4 games. We
will return to this illustration again and we will see how it
enables us to estimate many other sorts of probabilities.
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Experiment or Experimental Trial, or Trial, or Resampling Experi-
ment: A simulation experiment or trial is a randomly-gener-
ated composite event which has the same characteristics as the
actual composite event in which we are interested (except that
in inferential statistics the resampling experiment is generated
with the “benchmark” or “null” universe rather than with the
“alternative” universe).

Parameter: A numerical property of a universe. For example,
the “true” mean (don’t worry about the meaning of “true”),
and the range between largest and smallest members, are two
of its parameters.

Please see the glossary at the end of the book for a complete
list of terms used in the book.

Theoretical and historical methods of estimation

As introduced in Chapter 3, there are two general ways to
tackle any probability problem: theoretical-deductive and empiri-
cal, each of which has two sub-types. These concepts have com-
plicated links with the concept of “frequency series” discussed
earlier.

Empirical Methods. One empirical method is to look at actual
cases in nature—for example, examine all (or a sample of) the
families in Brazil that have four children and count the pro-
portion that have three girls among them. (This is the most
fundamental process in science and in information-getting gen-
erally. But in general we do not discuss it in this book and leave
it to courses called “research methods.” I regard that as a mis-
take and a shame, but so be it.) In some cases, of course, we
cannot get data in such fashion because it does not exist.

Another empirical method is to manipulate the simple ele-
ments in such fashion as to produce hypothetical experience
with how the simple elements behave. This is the heart of the
resampling method, as well as of physical simulations such as
wind tunnels.

Theoretical Methods. The most fundamental theoretical approach
is to resort to first principles, working with the elements in
their full deductive simplicity, and examining all possibilities.
This is what we do when we use a tree diagram to calculate
the probability of three girls in families of four children.

The formulaic approach is a theoretical method that aims to
avoid the inconvenience of resorting to first principles, and
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instead uses calculational shortcuts that have been worked out
in the past.

What the Book Teaches. This book teaches you the empirical
method using hypothetical cases. Formulas can be mislead-
ing for most people in most situations, and should be used as
a shortcut only when a person understands exactly which first
principles are embodied in the formulas. But most of the time,
students and practitioners resort to the formulaic approach
without understanding the first principles that lie behind
them—indeed, their own teachers often do not understand
these first principles—and therefore they have almost no way
to verify that the formula is right. Instead they use canned
checklists of qualifying conditions.

Samples and universes

The terms “sample” and “universe” (or “population”) [5] were
used earlier without definition. But now these terms must be
defined.

The concept of a sample
For our purposes, a “sample” is a collection of observations
for which you obtain the data to be used in the problem. Al-
most any set of observations for which you have data consti-
tutes a sample. (You might, or might not, choose to call a com-
plete census a sample.)

The concept of a universe or population
For every sample there must also be a universe “behind” it.
But “universe” is harder to define, partly because it is often
an imaginary concept. A universe is the collection of things or
people that you want to say that your sample was taken from. A
universe can be finite and well defined—“all live holders of
the Congressional Medal of Honor,” “all presidents of major
universities,” “all billion-dollar corporations in the United
States.” Of course, these finite universes may not be easy to
pin down; for instance, what is a “major university”? And these
universes may contain some elements that are difficult to find;
for instance, some Congressional Medal winners may have left
the country, and there may not be any public records on some
billion-dollar corporations.

Universes that are called “infinite” are harder to understand,
and it is often difficult to decide which universe is appropri-
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ate for a given purpose. For example, if you are studying a
sample of schizophrenics, what is the universe from which the
sample comes?  Depending on your purposes, the appropri-
ate universe might be all schizophrenics now alive, or it might
be all schizophrenics who might ever live. The latter concept
of the universe of schizophrenics is imaginary because some of
the universe does not exist. And it is infinite because it goes on
forever.

Not everyone likes this definition of “universe.” Others prefer
to think of a universe, not as the collection of people or things
that you want to say your sample was taken from, but as the
collection that the sample was actually taken from. This latter
view equates the universe to the “sampling frame” (the actual
list or set of elements you sample from) which is always finite
and existent. The definition of universe offered here is simply
the most practical, in my opinion.

The conventions of probability

Let’s review the basic conventions and rules used in the study
of probability:

1. Probabilities are expressed as decimals between 0 and 1, like
percentages. The weather forecaster might say that the prob-
ability of rain tomorrow is .2, or .97.

2. The probabilities of all the possible alternative outcomes in
a single “trial” must add to unity. If you are prepared to say
that it must either rain or not rain, with no other outcome be-
ing possible—that is, if you consider the outcomes to be mutu-
ally exclusive (a term that will be discussed below), then one of
those probabilities implies the other. That is, if you estimate
that the probability of rain is .2—written P(rain) = .2—that
implies that you estimate that P (no rain) = .8.

Mutually exclusive events – the addition rule

Definition: If there are just two events a and b and they are
“mutually exclusive” or “disjoint,” each implies the absence
of the other. Green and red coats are mutually exclusive for
you if (but only if) you never wear more than one coat at a
time.
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To state this idea formally,

If P(a and b) = 0

then outcomes a and b, and hence outcome a and its own ab-
sence (written P(^a)), are necessarily mutually exclusive, and
hence the two probabilities add to unity:

P(A) + P(^A) = 1.

The sales of your store in a given year cannot be both above
and below $1 million. Therefore if P(sales > $1 mil) = .2,
P(sales=< $1 mil) = .8.

This “complements” rule is useful as a consistency check on
your estimates of probabilities. If you say that the probability
of rain is .2, then you should check that you think that the prob-
ability of no rain is .8; if not, reconsider both the estimates.
The same for the probabilities of your team winning and los-
ing its next game.

Joint probabilities

Let’s return now to the Skins. We said earlier that our best
guess of the probability that the Skins will win the first game
is .6. Let’s complicate the matter a bit and say that the prob-
ability of the Skins winning depends upon the weather; on a
nice day we estimate a .65 chance of winning, on a nasty (rainy
or snowy) day a chance of .55. It is obvious that we then want
to know the chance of a nice day, and we estimate a probabil-
ity of .7. Let’s now ask the probability that both will happen—
it will be a nice day and the Skins will win.

Before getting on with the process of estimation itself, let’s tarry
a moment to discuss the probability estimates. Where do we
get the notion that the probability of a nice day next Sunday
is .7? We might have done so by checking the records of the
past 50 years, and finding 35 nice days on that date. If we as-
sume that the weather has not changed over that period (an
assumption that some might not think reasonable, and the
wisdom of which must be the outcome of some non-objective
judgment), our probability estimate of a nice day would then
be 35/50 = .7.

Two points to notice here: 1) The source of this estimate is an
objective “frequency series.” And 2) the data come to us as
the records of 50 days, of which 35 were nice. We would do
best to stick with exactly those numbers rather than convert
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them into a single number—70 percent. Percentages have a
way of being confusing. (When his point score goes up from 2
to 3, my racquetball partner is fond of saying that he has made
a “fifty percent increase”; that’s just one of the confusions with
percentages.) And converting to a percent loses information:
We no longer know how many observations the percent is
based upon, whereas 35/50 keeps that information.

Now, what about the estimate that the Skins have a .65 chance
of winning on a nice day—where does that come from? Un-
like the weather situation, there is no long series of stable data
to provide that information about the probability of winning.
Instead, we construct an estimate using whatever information
or “hunch” we have. The information might include the Skins’
record earlier in this season, injuries that have occurred, what
the “experts” in the newspapers say, the gambling odds, and
so on. The result certainly is not “objective,” or the result of a
stable frequency series. But we treat the .65 probability in quite
the same way as we treat the .7 estimate of a nice day. In the
case of winning, however, we produce an estimate expressed
directly as a percent.

If we are shaky about the estimate of winning—as indeed we
ought to be, because so much judgment and guesswork inevi-
tably goes into it—we might proceed as follows: Take hold of
an urn and two bags of balls, green and red. Put into the urn
some number of green balls—say 10. Now add enough red
balls to express your judgment that the ratio is the ratio of ex-
pected wins to losses on a nice day, adding or subtracting green
balls as necessary to get the ratio you want. If you end up with
13 green and 7 red balls, then you are “modeling” a probabil-
ity of .65, as stated above. If you end up with a different ratio
of balls, then you have learned from this experiment with your
own mind processes that you think that the probability of a
win on a nice day is something other than .65.

Don’t put away the urn. We will be using it again shortly. And
keep in mind how we have just been using it, because our use
later will be somewhat different though directly related.

One good way to begin the process of producing a compound
estimate is by portraying the available data in a “tree diagram”
like Figure 4-1. The tree diagram shows the possible events in
the order in which they might occur. A tree diagram is ex-
tremely valuable whether you will continue with either simu-
lation or the formulaic method.
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Figure 4-1: Tree Diagram

The monte carlo simulation method (resampling)

The steps we follow to simulate an answer to the compound-
probability question are as follows:

1. Put seven blue balls (for “nice day”) and three yellow balls
(“not nice”) into an urn labeled A.

2. Draw one ball from urn A. If it is blue, continue; otherwise
record “no” and stop.

3. If the ball drawn in step 2 is blue, indicating a nice day and
that you should continue the analysis, put 65 green balls (for
“win”) and 35 red balls (“lose”) into an urn labeled B.

4. If you have drawn a blue ball from run A, now draw a ball
from urn B, and if it is green, record “yes” on a score sheet;
otherwise write “no.”

5. Repeat steps 2-4 perhaps 1000 times.

6. Count the number of “yes” trials.

7. Compute the probability you seek as (number of “yeses”/
1000). (This is the same as (number of “yeses”/ (number of
“yeses” + number of “noes”)

Actually doing the above series of steps by hand is useful to
build your intuition about probability and simulation meth-
ods. But the procedure can also be simulated with a computer.
Using the language RESAMPLING STATS, we produce an es-
timate as follows:

URN 70#5 30#6 weather

“5” = no rain, “6” = rain

REPEAT 1000

SAMPLE 1 weather a
a draw one “ball” for the weather

nice day (P = .7)

nasty day (P = .3)

Skins win (P = .65) = .455 (Probability of nice
day Skins win)and

Skins lose (P = .35)

Skins win (P = .55)

Skins lose (P = .45)
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IF a = 5
if no rain, check on game outcome

URN 45#7 55#8 winlose
“7” = lose, “8” = win

SAMPLE 1 winlose b
b draw one “ball” for game outcome

IF b = 8
if no rain and a win

SCORE b z
mark a positive result

END
end the inner if-loop

END
end the outer if-loop

END
end the 1000 repeats

COUNT z = 8 k
count the positive results

DIVIDE k 1000 kk
find the proportion positives

PRINT kk

The above procedure gives us the probability that it will be a
nice day and the Skins will win—about 38.5 percent.

With the aid of an urn with a different composition—one made
by substituting 55 blue and 45 yellow balls in Step 3—a simi-
lar procedure yields the chance that it will be a nasty day and
the Skins will win. With a similar substitution and procedure
we could also estimate the probabilities that it will be a nasty
day and the Skins will lose, and a nice day and the Skins will
lose. The sum of these probabilities should come close to unity,
because the sum includes all the possible outcomes. But it will
not exactly equal unity because of what we call “sampling varia-
tion” or “sampling error.”

Please notice that each trial of the procedure begins with the
same numbers of balls in the urns as the previous trial. That
is, you must replace the balls you draw after each trial in or-
der that the probabilities remain the same from trial to trial.
Later we will discuss the general concept of replacement ver-
sus non-replacement more fully.
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The deductive formulaic method

It also is possible to get an answer with formulaic methods to
the question about a nice day and the Skins winning. The fol-
lowing discussion of nice-day-Skins-win handled by formula
is a prototype of the formulaic deductive method for handling
other problems.

Return now to the tree diagram (Figure 4-1) above. We can
read from the tree diagram that 70 percent of the time it will
be nice, and of that 70 percent of the time, 65 percent of the
games will be wins. That is, .65 * .7 = .455 = the probability of
a nice day and a win. That is the answer we seek. The method
seems easy, but it also is easy to get confused and obtain the
wrong answer.

Multiplication rule

We can generalize what we have just done. The foregoing for-
mula exemplifies what is known as the “multiplication rule”:

P(nice day and win) = P(nice day) * P(winning|nice day)

where the vertical line in P(winning|nice day) means “condi-
tional upon.” That is, the vertical line indicates a “conditional
probability,” a concept we must consider in a minute.

The multiplication rule is a formula that produces the prob-
ability of the combination (juncture) of two or more events. More
discussion of it will follow below.

Conditional and unconditional probabilities

Two kinds of probability statements—conditional and uncondi-
tional—must now be distinguished.

It is the appropriate concept when many factors, all small rela-
tive to each other rather than one force having an overwhelm-
ing influence, affect the outcome.

A conditional probability is formally written P(Skins win|rain)
= .65, and it is read “The probability that the Skins will win if
(given that) it rains is .65.” It is the appropriate concept when
there is one (or more) major event of interest in decision con-
texts.
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Let’s use another football example to explain conditional and
unconditional probabilities. In the year this is being written,
the University of Maryland has an unpromising football team.
Someone may nevertheless ask what chance the team has of
winning the post season game at the bowl to which only the
best team in the University of Maryland’s league is sent. One
may say that if by some miracle the University of Maryland
does get to the bowl, its chance would be a bit less than 50-
50—say, .40. That is, the probability of its winning, conditional
on getting to the bowl is .40. But the chance of its getting to
the bowl at all is very low, perhaps .01. If so, the unconditional
probability of winning at the bowl is the probability of its get-
ting there multiplied by the probability of winning if it gets
there; that is, .01 x .40 = .004. (It would be even better to say
that .004 is the probability of winning conditional only on hav-
ing a team, there being a league, and so on, all of which seem
almost sure things.) Every probability is conditional on many
things—that war does not break out, that the sun continues to
rise, and so on. But if all those unspecified conditions are very
sure, and can be taken for granted, we talk of the probability
as unconditional.

A conditional probability is a statement that the probability of
an event is such-and-such if something else is so-and-so; it is
the “if” that makes a probability statement conditional. True,
in some sense all probability statements are conditional; for
example, the probability of an even-numbered spade is 6/52
if the deck is a poker deck and not necessarily if it is a pinochle
deck or Tarot deck. But we ignore such conditions for most
purposes.

Most of the use of the concept of probability in the social sci-
ences is conditional probability. All hypothesis-testing statis-
tics (discussed starting in Chapter 14) are conditional prob-
abilities.

Here is the typical conditional-probability question used in
social-science statistics: What is the probability of obtaining
this sample S (by chance) if the sample were taken from uni-
verse A? For example, what is the probability of getting a
sample of five children with I.Q.s over 100 by chance in a sample
randomly chosen from the universe of children whose aver-
age I.Q. is 100?

One way to obtain such conditional-probability statements is
by examination of the results generated by universes like the
conditional universe. For example, assume that we are con-
sidering a universe of children where the average I.Q. is 100.
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Write down “over 100” and “under 100” respectively on many
slips of paper, put them into a hat, draw five slips several times,
and see how often the first five slips drawn are all over 100.
This is the resampling (Monte Carlo simulation) method of
estimating probabilities.

Another way to obtain such conditional-probability statements
is formulaic calculation. For example, if half the slips in the
hat have numbers under 100 and half over 100, the probabil-
ity of getting five in a row above 100 is .03125 —that is, .55, or
.5 x .5 x .5 x .5 x .5, using the multiplication rule introduced
above. But if you are not absolutely sure you know the proper
mathematical formula, you are more likely to come up with a
sound answer with the simulation method.

Let’s illustrate the concept of conditional probability with four
cards—two aces and two 3’s (or two black and two red). What
is the probability of an ace? Obviously, .5. If you first draw an
ace, what is the probability of an ace now? That is, what is the
probability of an ace conditional on having drawn one already?
Obviously not .5.

This change in the conditional probabilities is the basis of math-
ematician Edward Thorp’s famous system of card-counting to
beat the casinos at blackjack (Twenty One).

Casinos can defeat card counting by using many decks at once
so that conditional probabilities change more slowly, and are
not very different than unconditional probabilities. Looking
ahead, we will see that sampling with replacement, and sam-
pling without replacement from a huge universe, are much
the same in practice, so we can substitute one for the other at
our convenience.

Let’s further illustrate the concept of conditional probability
with a puzzle (from Gardner, 1983, p. 42). “Shuffle a packet of
four cards—two red, two black—and deal them face down in
a row. Two cards are picked at random, say by placing a penny
on each. What is the probability that those two cards are the
same color?”

1. Play the game with the cards 100 times, and estimate the
probability sought.

OR

1. Put slips with the numbers “1,” “1,” “2,” and “2” in a hat,
or in an array on a computer named N.
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2. Shuffle the slips or the array

3. Take the first number in the hat or array and store it some-
place—perhaps in a location called A.

4. Take the second number and store it in B.

5. Subtract the numbers in A and B. If the result is 0, record
“Y,” otherwise “N.”

6. Repeat (1-5) 1000 times, and count the proportion of “Y’s.”
That proportion equals the probability we seek to estimate.

Now let’s play the game differently, first picking one card and
putting it back and shuffling before picking a second card. What
are the results now? You can try it with the cards, or with a
computer program similar to the above.

Why do you get different results in the two cases? Let’s ask
the question differently: What is the probability of first pick-
ing a black card? Clearly, it is 50-50, or .5. Now, if you first
pick a black card, what is the probability in the first game above
of getting a second black card? There are two red and one black
cards left, so now p = 1/3.

But in the second game, what is the probability of picking a
second black card if the first one you pick is black? It is still .5
because we are sampling with replacement.

The probability of picking a second black card conditional on
picking a first black card in the first game is 1/3, and it is differ-
ent from the unconditional probability of picking a black card
first. But in the second game the probability of the second black
card conditional on first picking a black card is the same as
the probability of the first black card.

So the reason you lose money if you play the first game at even
odds against a carnival game operator is because the condi-
tional probability is different than the original probability.

And an illustrative joke: The best way to avoid there being a
live bomb aboard your plane flight is to take an inoperative
bomb aboard with you; the probability of one bomb is very
low, and by the multiplication rule, the probability of two bombs
is very very low. Two hundred years ago the same joke was told
about the midshipman who, during a battle, stuck his head
through a hole in the ship’s side that had just been made by
an enemy cannon ball because he had heard that the probabil-
ity of two cannonballs striking in the same place was one in a
million.
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What’s wrong with the logic in the joke? The probability of
there being a bomb aboard already, conditional on your bring-
ing a bomb aboard, is the same as the conditional probability
if you do not bring a bomb aboard. Hence you change noth-
ing by bringing a bomb aboard, and do not reduce the prob-
ability of an explosion.

The skins again, plus leaving the game early

Let’s carry exactly the same process one tiny step further. As-
sume that if the Skins win, there is a .3 chance you will leave
the game early. Now let us ask the probability of a nice day,
the Skins winning, and you leaving early. You should be able
to see that this probability can be estimated with three urns
instead of two. Or it can be computed with the multiplication
rule as .65 * .7 * .3 = .1365 (about .14)—the probability of a nice
day and a win and you leave early.

The book shows you the formal method—the multiplication
rule, in this case—for several reasons: 1) Simulation is weak
with very low probabilities, e.g. P(50 heads in 50 throws). But—
a big but—statistics and probability is seldom concerned with
very small probabilities. Even for games like poker, the orders
of magnitude of 5 aces in a wild game with joker, or of a royal
flush, matter little. 2) The multiplication rule is wonderfully
handy and convenient for quick calculations in a variety of
circumstances. A back-of-the-envelope calculation can be
quicker than a simulation. And it can also be useful in situa-
tions where the probability you will calculate will be very
small, in which case simulation can require considerable com-
puter time to be accurate. (We will shortly see this point illus-
trated in the case of estimating the rate of transmission of AIDS
by surgeons.) 3) It is useful to know the theory so that you are
able to talk to others, or if you go on to other courses in the
mathematics of probability and statistics.

The multiplication rule also has the drawback of sometimes
being confusing, however. If you are in the slightest doubt
about whether the circumstances are correct for applying it,
you will be safer to perform a simulation as we did earlier
with the Skins, though in practice you are likely to simulate
with the aid of a computer program, as we shall see shortly.
So use the multiplication rule only when there is no possibil-
ity of confusion. Usually that means using it only when the
events under consideration are independent.
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Notice that the same multiplication rule gives us the probabil-
ity of any particular sequence of hits and misses—say, a miss,
then a hit, then a hit if the probability of a single miss is 2/3.
Among the 2/3 of the trials with misses on the first shot, 1/3
will next have a hit, so 2/3 x 1/3 equals the probability of a
miss then a hit. Of those 2/9 of the trials, 1/3 will then have a
hit, or 2/3 x 1/3 x 1/3 = 2/27 equals the probability of the
sequence miss-hit-hit.

The multiplication rule is very useful in everyday life. It fits
closely to a great many situations such as “What is the chance
that it will rain (.3) and that (if it does rain) the plane will not
fly (.8)?” Hence the probability of your not leaving the airport
today is .3 x .8 = .24.


