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The Basic Ideas in
Statistical Inference

Probabilistic statistical inference is a crucial part of the pro-
cess of informing ourselves about the world around us. Sta-
tistics and statistical inference help us understand our world
and make sound decisions about how to act.

More specifically, statistical inference is the process of draw-
ing conclusions about populations or other collections of ob-
jects about which we have only partial knowledge from
samples. Technically, inference may be defined as the selec-
tion of a probabilistic model to resemble the process you wish
to investigate, investigation of that model’s behavior, and
interpretion of the results. Fuller understanding of the nature
of statistical inference comes with practice in handling a vari-
ety of problems.

Until the 18th century, humanity’s extensive knowledge of
nature and technology was not based on formal probabilistic
statistical inference. But now that we have already dealt with
many of the big questions that are easy to answer without
probabilistic statistics, and now that we live in a more rami-
fied world than in earlier centuries, the methods of inferential
statistics become ever more important.

Furthermore, statistical inference will surely become ever more
important in the future as we voyage into realms that are in-
creasingly difficult to comprehend. The development of an
accurate chronometer to tell time on sea voyages became a cru-
cial need when Europeans sought to travel to the New World.
Similarly, probability and statistical inference become crucial
as we voyage out into space and down into the depths of the
ocean and the earth, as well as probe into the secrets of the
microcosm and of the human mind and soul.
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Where probabilistic statistical inference is employed, the in-
ferential procedures may well not be the crucial element. For
example, the wording of the questions asked in a
public-opinion poll may be more critical than the
statistical-inferential procedures used to discern the reliability
of the poll results. Yet we dare not disregard the role of the
statistical procedures.

Knowledge without probabilistic statistical inference

Let us distinguish two kinds of knowledge with which infer-
ence at large (that is, not just probabilistic statistical inference)
is mainly concerned: a) one or more absolute measurements on
one or more dimensions of a collection of one or more items—
for example, your income, or the mean income of the people
in your country; and b) comparative measurements and evalu-
ations of two or more collections of items (especially whether
they are equal or unequal)—for example, the mean income in
Brazil compared to the mean income in Argentina. Types (a)
and (b) both include asking whether there has been a change
between one observation and another.

What is the conceptual basis for gathering these types of knowl-
edge about the world? I believe that our rock bottom concep-
tual tool is the assumption of what we may call sameness, or
continuity, or constancy, or repetition, or equality, or persistence;
“constancy” and “continuity” will be the terms used most fre-
quently here, and I shall use them interchangeably.

Continuity is a non-statistical concept. It is a best guess about
the next point beyond the known observations, without any
idea of the accuracy of the estimate. It is like testing the ground
ahead when walking in a marsh. It is local rather than global.
We’ll talk a bit later about why continuity seems to be present
in much of the world that we encounter.

The other great concept in statistical inference, and perhaps in
all inference taken together, is representative (usually random)
sampling, to be discussed in Chapter 12. Representative sam-
pling—which depends upon the assumption of sameness (ho-
mogeneity) throughout the universe to be investigated—is
quite different than continuity; representative sampling as-
sumes that there is no greater chance of a connection between
any two elements that might be drawn into the sample than
between any other two elements; the order of drawing is im-
material. In contrast, continuity assumes that there is a greater
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chance of connection between two contiguous elements than
between either one of the elements and any of the many other
elements that are not contiguous to either. Indeed, the process
of randomizing is a device for doing away with continuity and
autocorrelation within some bounded closed system—the
sample “frame.” It is an attempt to map (describe) the entire
area ahead using the device of the systematic survey. Random
representative sampling enables us to make probabilistic in-
ferences about a population based on the evidence of a sample.

To return now to the concept of sameness: Examples of the
principle are that we assume: a) our house will be in the same
place tomorrow as today; b) a hammer will break an egg ev-
ery time you hit the latter with the former (or even the former
with the latter); c) if you observe that the first fifteen persons
you see walking out of a door at the airport are male, the six-
teenth probably will be male also; d) paths in the village stay
much the same through a person’s life; e) religious ritual
changes little through the decades; f) your best guess about
tomorrow’s temperature or stock price is that will be the same
as today’s. This principle of constancy is related to David
Hume’s concept of constant conjunction.

When my children were young, I would point to a tree on our
lawn and ask: “Do you think that tree will be there tomor-
row?” And when they would answer “Yes,” I’d ask, “Why
doesn’t the tree fall?” That’s a tough question to answer.

There are two reasonable bases for predicting that the tree will
be standing tomorrow. First and most compelling for most of
us is that almost all trees continue standing from day to day,
and this particular one has never fallen; hence, what has been
in the past is likely to continue. This assessment requires no
scientific knowledge of trees, yet it is a very functional way to
approach most questions concerning the trees—such as
whether to hang a clothesline from it, or whether to worry that
it will fall on the house tonight. That is, we can predict the
outcome in this case with very high likelihood of being cor-
rect even though we do not utilize anything that would be
called either science or statistical inference. (But what do you
reply when your child says: “Why should I wear a seat belt?
I’ve never been in an accident”?)

A second possible basis for prediction that the tree will be
standing is scientific analysis of the tree’s roots—how the tree’s
weight is distributed, its sickness or health, and so on. Let’s
put aside this sort of scientific-engineering analysis for now.
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The first basis for predicting that the tree will be standing to-
morrow—sameness—is the most important heuristic device in
all of knowledge-gathering. It is often a weak heuristic; cer-
tainly the prediction about the tree would be better grounded
(!) after a skilled forester examines the tree. But persistence
alone might be a better heuristic in a particular case than an
engineering-scientific analysis alone.

This heuristic appears more obvious if the child—or the adult—
were to respond to the question about the tree with another
question: Why should I expect it to fall? In the absence of some
reason to expect change, it is quite reasonable to expect no
change. And the child’s new question does not duck the cen-
tral question we have asked about the tree, any more than one
ducks a probability estimate by estimating the complementary
probability (that is, unity minus the probability sought); in-
deed, this is a very sound strategy in many situations.

Constancy can refer to location, time, relationship to another
variable, or yet another dimension. Constancy may also be
cyclical. Some cyclical changes can be charted or mapped with
relative certainty—for example the life-cycles of persons,
plants, and animals; the diurnal cycle of dark and light; and
the yearly cycle of seasons. The courses of some diseases can
also be charted. Hence these kinds of knowledge have long
been well known.

Consider driving along a road. One can predict that the price
of the next gasoline station will be within a few cents of the
gasoline station that you just passed. But as you drive further
and further, the dispersion increases as you cross state lines
and taxes differ. This illustrates continuity.

The attention to constancy can focus on a single event, such as
leaves of similar shape appearing on the same plant. Or atten-
tion can focus on single sequences of “production,” as in the
process by which a seed produces a tree. For example, let’s
say you see two puppies—one that looks like a low-slung
dachshund, and the other a huge mastiff. You also see two
grown male dogs, also apparently dachshund and mastiff. If
asked about the parentage of the small ones, you are likely—
using the principle of sameness—to point—quickly and with
surety—to the adult dogs of the same breed. (Here it is impor-
tant to notice that this answer implicitly assumes that the fa-
thers of the puppies are among these dogs. But the fathers
might be somewhere else entirely; it is in these ways that the
principle of sameness can lead you astray.)
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When applying the concept of sameness, the object of interest
may be collections of data, as in Semmelweiss’s data on the
consistent differences in rates of maternal deaths from childbed
fever in two clinics with different conditions (see Table 11-1),
or the similarities in sex ratios from year to year in Graunt’s
data on London births (Table 11-2), or the stark effect in John
Snow’s data on the numbers of cholera cases associated with
two London wells (Table 11-3), or the reduction in beriberi
among Japanese sailors as a result of a change in diet (Table
11-4). These data seem so overwhelmingly clear cut that our
naive statistical sense makes the relationships seem determin-
istic, and the conclusions seems straightforward. (But the same
statistical sense frequently misleads us when considering
sports and stock market data.)

Table 11-1
Deaths of Mothers

First Clinic Second Clinic

Births Deaths Rate Births Deaths Rate

1841
1842
1843
1844
1845
1845

Total
Avg.

3,036
3,287
3,060
3,157
3,492
4,010

20,042

237
518
274
260
241
459

1,989

7.8
15.8

8.9
8.2
6.9

11.4

9.9

2,442
2,659
2,739
2,956
3,241
3,754

17,791

86
202
164

68
66

105

691

3.5
 7.6
6.0
 2.3
2.0
2.8

3.9

Source: Semmelweis, Ignaz, The Etiology, Concept, and Prophylaxis of Childbed
Fever, Translated and edited by K. Codell Carter (Madison, Wisconsin: Univ.
of Wisconsin Press, 1983), p. 64.

Table 11-2
Ratio of Number of Males to Number of Females

London
Period Christenings

1629-1636
1637-1640
1641-1648
1649-1656
1657-1660

1,072
1,073
1,063
1,095
1,069

Source: Graunt, John, Natural and Political Observations Mentioned in a Fol-
lowing Index and Made Upon the Bills of Mortality (Reprint Edition) (New
York; Arno Press, 1662/1975).
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Table 11-3
John Snow’s Data on Cholera Rates for Three Wells

Southwark and Vauxhall Supply

Lambeth Supply

Rest of London

71 deaths per 10,000 houses

5 deaths per 10,000 houses

9 deaths per 10,000 houses

Source: Winslow, Charles-Edward Amory, The Conquest of Epidemic Disease
(Madison, Wisconsin: Univ. of Wisconsin Press, 1980), p. 276.

Table 11-4
Takaki’s Japanese Naval Records of Deaths from Beriberi

Year Diet Total Navy Personnel Deaths from Beriberi

1880

1881

1882

1883

1884

1885

1886

1887

1888

Rice diet

Rice diet

Rice diet

Rice Diet

Change to new diet

New diet

New diet

New diet

New diet

4,956

4,641

4,769

5,346

5,638

6,918

8,475

9,106

9,184

1,725

1,165

1,929

1,236

718

41

3

0

0

Source: K. Takaki, in Kornberg, 1989, p. 9

Constancy and sameness can be seen in macro structures; con-
sider, for example, the constant location of your house. Con-
stancy can also be seen in micro aggregations—for example,
the raindrops and rain that account for the predictably fluctu-
ating height of the Nile, or the ratio of boys to girls born in
London, cases in which we can average to see the “statistical”
sameness. The total sum of the raindrops produces the level
of a reservoir or a river from year to year, and the sum of the
behaviors of collections of persons causes the birth rates in the
various years.

Statistical inference is only needed when a person thinks that
s/he might have found a pattern but the pattern is not com-
pletely obvious to all. Probabilistic inference works to test—
either to confirm or discount—the belief in the pattern’s exist-
ence. We will see such cases in the following chapter.
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People have always been forced to think about and act in situ-
ations that have not been constant—that is, situations where
the amount of variability in the phenomenon makes it impos-
sible to draw clear cut, sensible conclusions. For example, the
appearance of game animals in given places and at given times
has always been uncertain to hunters, and therefore it has al-
ways been difficult to know which target to hunt in which
place at what time. And of course variability of the weather
has always made it a very uncertain element. The behavior of
one’s enemies and friends has always been uncertain, too,
though uncertain in a manner different from the behavior of
wild animals; there often is a gaming element in interactions
with other humans. But in earlier times, data and techniques
did not exist to enable us to bring statistical inference to bear.

The treatment of uncertainty

The purpose of statistical inference is to help us peer through
the veil of variability when it obscures the main thrust of the
data, so as to improve the decisions we make. Statistical infer-
ence (or in most cases, simply probabilistic estimation) can help
a) a gambler deciding on the appropriate odds in a betting
game when there seems to be little or no difference between
two or more outcomes; b) an astronomer deciding upon one
or another value as the central estimate for the location of a
star when there is considerable variation in the observations
s/he has made of the star; c) a basketball coach pondering
whether to remove from the game her best shooter who has
heretofore done poorly tonight; d) an oil-drilling firm debat-
ing whether to follow up a test-well drilling with a full-bore
drilling when the probability of success is not overwhelming
but the payoff to a gusher could be large.

Returning to the tree near the Simon house: Let’s change the
facts. Assume now that one major part of the tree is mostly
dead, and we expect a big winter storm tonight. What is the
danger that the tree will fall on the house? Should we spend
$1500 to have the mostly-dead third of it cut down? We know
that last year a good many trees fell on houses in the neigh-
borhood during such a storm.

We can gather some data on the proportion of old trees this
size that fell on houses—about 5 in 100, so far as we can tell.
Now it is no longer an open-and-shut case about whether the
tree will be standing tomorrow, and we are using statistical
inference to help us with our thinking. We proceed to find a
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set of trees that we consider similar to this one, and study the
variation in the outcomes of such trees. So far we have esti-
mated that the average for this group of trees—the mean (pro-
portion) that fell in the last big storm—is 5 percent. Averages
are much more “stable”—that is, more similar to each other—
than are individual cases.

Notice how we use the crucial concept of sameness: We as-
sume that our tree is like the others we observed, or at least
that it is not systematically different from most of them and it
is more-or-less average.

How would our thinking be different if our data were that one
tree in 10 had fallen instead of 5 in 100? This is a question in
statistical inference.

How about if we investigate further and find that 4 of 40 elms
fell, but only one of 60 oaks, and ours is an oak tree. Should we
consider that oaks and elms have different chances of falling?
Proceeding a bit further, we can think of the question as: Should
we or should we not consider oaks and elms as different? This
is the type of statistical inference called “hypothesis testing”:
We apply statistical procedures to help us decide whether to
treat the two classes of trees as the same or different. If we
should consider them the same, our worries about the tree fall-
ing are greater than if we consider them different with respect
to the chance of damage.

Notice that statistical inference was not necessary for accurate
prediction when I asked the kids about the likelihood of a live
tree falling on a day when there would be no storm. So it is
with most situations we encounter. But when the assumption
of constancy becomes shaky for one reason or another, as with
the sick tree falling in a storm, we need a more refined form of
thinking. We collect data on a large number of instances, in-
quire into whether the instances in which we are interested
(our tree and the chance of it falling) are representative—that
is, whether it resembles what we would get if we drew a
sample randomly—and we then investigate the behavior of
this large class of instances to see what light it throws on the
instances(s) in which we are interested.

The procedure in this case—which we shall discuss in greater
detail later on—is to ask: If oaks and elms are not different,
how likely is it that only one of 60 oaks would fall whereas 4
of 40 elms would fall? Again, notice the assumption that our
tree is “representative” of the other trees about which we have
information—that it is not systematically different from most
of them, but rather that it is more-or-less average. Our tree cer-
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tainly was not chosen randomly from the set of trees we are
considering. But for purposes of our analysis, we proceed as if
it had been chosen randomly—because we deem it “represen-
tative.”

This is the first of two roles that the concept of randomness
plays in statistical thinking. Here is an example of the second
use of the concept of randomness: We conduct an experiment—
plant elm and oak trees at randomly-selected locations on a plot
of land, and then try to blow them down with a wind-making
machine. (The random selection of planting spots is impor-
tant because some locations on a plot of ground have differ-
ent growing characteristics than do others.) Some purists ob-
ject that only this sort of experimental sampling is a valid sub-
ject of statistical inference; it can never be appropriate, they
say, to simply assume on the basis of other knowledge that the
tree is representative. I regard that purist view as a helpful
discipline on our thinking. But accepting its conclusion—that
one should not apply statistical inference except to
randomly-drawn or randomly-constituted samples—would
take from us a tool that has proven useful in a variety of ac-
tivities.

As discussed earlier in this chapter, the data in some (prob-
ably most) scientific situations are so overwhelming that one
can proceed without probabilistic inference. Historical ex-
amples include those shown above of Semmelweiss and pu-
erperal fever, and John Snow and cholera. But where there was
lack of overwhelming evidence, the causation of many diseases
long remained unclear for lack of statistical procedures. This
led to superstitious beliefs and counter-productive behavior,
such as quarantines against plague often were. Some effective
practices also arose despite the lack of sound theory, how-
ever—the waxed costumes of doctors, and the burning of mat-
tresses, despite the wrong theory about the causation of plague;
see Cipolla, 1981)

So far I have spoken only of predictability and not of other ele-
ments of statistical knowledge such as understanding and con-
trol. This is simply because statistical correlation is the bed rock
of most scientific understanding, and predictability. Later we
will expand the discussion beyond predictability; it holds no
sacred place here.

1 It is because hypothesis testing focuses on this most basic of inferential
processes—deciding “same” or “different”—that I believe it to be a more
basic technique than estimating confidence intervals, which focus on the
accuracy of estimates.
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Where statistical inference becomes crucial

There was little role for statistical inference until about three
centuries ago because there existed very few scientific data.
When scientific data began to appear, the need emerged for
statistical inference to improve the interpretation of the data.
As we saw, statistical inference is not needed when the evi-
dence is overwhelming. A thousand cholera cases at one well
and zero at another obviously does not require a statistical test.
Neither would 999 cases to one, or even 700 cases to 300, be-
cause our inbred and learned statistical senses can detect that
the two situations are different. But probabilistic inference is
needed when the number of cases is relatively small or where
for other reasons the data are somewhat ambiguous.

For example, when working with the 17th century data on
births and deaths, John Graunt—great statistician though he
was—drew wrong conclusions about some matters because he
lacked modern knowledge of statistical inference. For example,
he found that in the rural parish of Romsey “there were born
15 Females for 16 Males, whereas in London there were 13 for
14, which shows, that London is somewhat more apt to pro-
duce Males, then the country” (p. 71). He suggests that the “cu-
rious” inquire into the causes of this phenomenon, apparently
not recognizing—and at that time he had no way to test—that
the difference might be due solely to chance. He also notices
(p. 94) that the variations in deaths among years in Romsey
were greater than in London, and he attempted to explain this
apparent fact (which is just a statistical artifact) rather than
understanding that this is almost inevitable because Romsey
is so much smaller than London. Because we have available
to us the modern understanding of variability, we can now
reach sound conclusions on these matters.

Summary statistics—such as the simple mean—are devices for
reducing a large mass of data (inevitably confusing unless they
are absolutely clear cut) to something one can manage to un-
derstand. And probabilistic inference is a device for determin-
ing whether patterns should be considered as facts or artifacts.

Here is another example that illustrates the state of early quan-
titative research in medicine:

Exploring the effect of a common medicinal sub-
stance, Boecker examined the effect of sasparilla on
the nitrogenous and other constituents of the urine.
An individual receiving a controlled diet was given
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a decoction of sasparilla for a period of twelve days,
and the volume of urine passed daily was carefully
measured. For a further twelve days that same indi-
vidual, on the same diet, was given only distilled
water, and the daily quantity of urine was again de-
termined. The first series of researches gave the fol-
lowing figures (in cubic centimeters): 1,467, 1,744,
1,665, 1,220, 1,161, 1,369, 1,675, 2,199, 887, 1,634, 943,
and 2,093 (mean = 1,499); the second series: 1,263,
1,740, 1,538, 1,526, 1,387, 1,422, 1,754, 1,320, 1,809,
2,139, 1,574, and 1,114 (mean = 1,549). Much uncer-
tainty surrounded the exactitude of these measure-
ments, but this played little role in the ensuing dis-
cussion. The fundamental issue was not the quality
of the experimental data but how inferences were
drawn from those data (Coleman in Kruger, 1987,
p. 207).

The experimenter Boecker had no reliable way of judging
whether the data for the two groups were or were not mean-
ingfully different, and therefore he arrived at the unsound con-
clusion that there was indeed a difference. (Gustav Radicke
used this example as the basis for early work on statistical sig-
nificance.)

Another example: Joseph Lister convinced the scientific world
of the germ theory of infection, and the possibility of prevent-
ing death with a disinfectant, with these data: Prior to the use
of antiseptics—16 post-operative deaths in 35 amputations;
subsequent to the use of antiseptics—6 deaths in 40 amputa-
tions (Winslow, 1943, p. 303). But how sure could one be that
a difference of that size might not occur just by chance? No
one then could say, nor did anyone inquire, apparently.

Here’s another example of great scientists falling into error
because of a too-primitive approach to data (Feller, 3rd ed,
1968, pp. 69-70): Charles Darwin wanted to compare two sets
of measured data, each containing 16 observations. At
Darwin’s request, Francis Galton compared the two sets of data
by ranking each, and then comparing them pairwise. The a’s
were ahead 13 times. Without knowledge of the actual prob-
abilities Galton concluded that the treatment was effective. But,
assuming perfect randomness, the probability that the a’s beat
[the others] 13 times or more equals 3/16. This means that in
three out of sixteen cases a perfectly ineffectual treatment
would appear as good or better than the treatment classified
as effective by Galton.
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That is, Galton and Darwin reached an unsound conclusion.
As Feller says, “This shows that a quantitative analysis may
be a valuable supplement to our rather shaky intuition” (p.
70).

Looking ahead, the key tool in situations like Graunt’s and
Boecker’s and Lister’s is creating ceteris paribus—making “ev-
erything else the same”—with random selection in experi-
ments, or at least with statistical controls in non-experimental
situations.

Conclusions

In all knowledge-seeking and decision-making, our aim is to
peer into the unknown and reduce our uncertainty a bit. The
two main concepts that we use—the two great concepts in all
of scientific knowledge-seeking, and perhaps in all practical
thinking and decision-making—are a) continuity (or
non-randomness) and the extent to which it applies in given
situation, and b) random sampling, and the extent to which
we can assume that our observations are indeed chosen by a
random process.

Endnotes

1. These are cases of David Hume’s “constant conjunction.”

2. I benefited from the discussion of this matter by Hald, 1990,
p. 93ff.

3. A peculiar perverseness associated with the new knowledge
of statistical inference is that very strong findings, which re-
quire little or no formal inference to demonstrate and which
are so powerful that they can be shown with a simple graph
or table, are very hard to publish in social science literature
because they do not meet the tests of “rigor,” and “elegance.”
Editors view them as detracting from the “technical level” of
their journals. A good many of the greatest discoveries of the
past would nowadays fall in this category of being difficult or
impossible to publish.


