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Here’s the bad-news-good-news message again: The bad news
is that the subject of inferential statistics is extremely difficult—
not because it is complex but rather because it is subtle. The
cause of the difficulty is that the world around us is difficult
to understand, and spoon-fed mathematical simplifications
which you manipulate mechanically simply mislead you into
thinking you understand that about which you have not got a
clue.

The good news is that you—and that means you, even if you
say you are “no good at math”—can understand these prob-
lems with a layperson’s hard thinking, even if you have no
mathematical background beyond arithmetic and you think
that you have no mathematical capability. That’s because the
difficulty lies in such matters as pin-pointing the right ques-
tion, and understanding how to interpret your results.

The problems in the previous chapter were tough enough. But
this chapter considers problems with additional complications,
such as when there are more than two groups, or paired com-
parisons for the same units of observation.

The Statistics of
Hypothesis-Testing with
Counted Data, Part 2

Comparisons among more than two samples of counted data

Example 17-1: Do Any of Four Treatments Affect the Sex
Ratio in Fruit Flies? (When the Benchmark Universe Propor-
tion is Known, Is the Proportion of the Binomial Population
Affected by Any of the Treatments?) (Program “4treat”)

Suppose that, instead of experimenting with just one type of
radiation treatment on the flies (as in Example 15-1), you try
four different treatments, which we shall label A, B, C, and D.
Treatment A produces fourteen males and six females, but treat-
ments B, C, and D produce ten, eleven, and ten males, respec-
tively. It is immediately obvious that there is no reason to think
that treatment B, C, or D affects the sex ratio. But what about
treatment A?

CHAPTER

17
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A frequent and dangerous mistake made by young scientists
is to scrounge around in the data for the most extreme result,
and then treat it as if it were the only result. In the context of
this example, it would be fallacious to think that the probabil-
ity of the fourteen-males-to-six females split observed for treat-
ment A is the same as the probability that we figured for a
single experiment in Example 15-1. Instead, we must consider
that our benchmark universe is composed of four sets of twenty
trials, each trial having a 50-50 probability of being male. We
can consider that our previous trials 1-4 in Example 15-1 con-
stitute a single new trial, and each subsequent set of four pre-
vious trials constitute another new trial. We then ask how likely
a new trial of our sets of twenty flips is to produce one set with
fourteen or more of one or the other sex.

Let us make the procedure explicit, but using random num-
bers instead of coins this time:

Step 1. Let “1-5” = males, “6-0” = females

Step 2. Choose four groups of twenty numbers. If for any
group there are 14 or more males, record “yes”; if 13 or less,
record “no.”

Step 3. Repeat perhaps 1000 times.

Step 4. Calculate the proportion “yes” in the 1000 trials. This
proportion estimates the probability that a fruit fly popula-
tion with a proportion of 50 percent males will produce as
many as 14 males in at least one of four samples of 20 flies.

We begin the trials with data as in Table 17-1. In two of the six
simulation trials, more than one sample shows 14 or more
males. Another trial shows fourteen or more females. Without
even concerning ourselves about whether we should be look-
ing at males or females, or just males, or needing to do more
trials, we can see that it would be very common indeed to have
one of four treatments show fourteen or more of one sex just
by chance. This discovery clearly indicates that a result that
would be fairly unusual (three in twenty-five) for a single
sample alone is commonplace in one of four observed samples.
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Table 17-1
Number of “Males” in Groups of 20

(Based on Random Numbers)

Trial  Group A  Group B  Group C  Group D Yes/No
>= 14 or <= 6

1 11 12 8 12 No

2 12 7 9 8 No

3 6 10 10 10 Yes

4 9 9 12 7 No

5 14 12 13 10 Yes

6 11 14 9 7 Yes

A key point of the RESAMPLING STATS program “4TREAT”
is that each sample consists of four sets of 20 randomly gener-
ated hypothetical fruit flies. And if we consider 1000 trials, we
will be examining 4000 sets of 20 fruit flies.

In each trial we GENERATE up to 4 random samples of 20
fruit flies, and for each, we count the number of males (“1”s)
and then check whether that group has more than 13 of either
sex (actually, more than 13 “1”s or less than 7 “1”s). If it does,
then we change J to 1, which informs us that for this sample,
at least 1 group of 20 fruit flies had results as unusual as the
results from the fruit flies exposed to the four treatments.

After the 1000 runs are made, we count the number of trials
where one sample had a group of fruit flies with 14 or more of
either sex, and PRINT the results.

REPEAT 1000
Do 1000 experiments.

COPY (0) j
j indicates whether we have obtained a trial group with 14 or more of
either sex. We start at “0” (= no).

REPEAT 4
Repeat the following steps 4 times to constitute 4 trial groups of 20
flies each.

GENERATE 20 1,2 a
Generate randomly 20 “1”s and “2”s and put them in a; let “1”
= male.

COUNT a =1 b
Count the number of males, put the result in b.

IF b >= 14
If the result is 14 or more males, then
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COPY (1) j
Set the indicator to “1.”

END
End the IF condition.

IF b <= 6
If the result is 6 or fewer males (the same as 14 or more females),
then

COPY (1) j
Set the indicator to “1.”

END
End the IF condition.

END
End the procedure for one group, go back and repeat until all four
groups have been done.

SCORE j z
j now tells us whether we got a result as extreme as that observed (j =
“1” if we did, j = “0” if not). We must keep track in z of this result for
each experiment.

END
End one experiment, go back and repeat until all 1000 are complete.

COUNT z =1 k
Count the number of experiments in which we had results as extreme as
those observed.

DIVIDE k 1000 kk
Convert to a proportion.

PRINT kk
Print the result.

Note: The file “4treat” on the Resampling Stats software disk
contains this set of commands.

In one set of 1000 trials, there were more than 13 or less than 7
males 33 percent of the time—clearly not an unusual occur-
rence.
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Example 17-2: Do Four Psychological Treatments Differ in
Effectiveness? (Do Several Two-Outcome Samples Differ
Among Themselves in Their Proportions? (Program “4treat1”)

Consider four different psychological treatments designed to
rehabilitate juvenile delinquents. Instead of a numerical test
score, there is only a “yes” or a “no” answer as to whether the
juvenile has been rehabilitated or has gotten into trouble again.
Label the treatments P, R, S, and T, each of which is adminis-
tered to a separate group of twenty juvenile delinquents. The
number of rehabilitations per group has been: P, 17; R, 10; S,
10; T, 7. Is it improbable that all four groups come from the
same universe?

This problem is like the placebo vs. cancer-cure problem, but
now there are more than two samples. It is also like the
four-sample irradiated-fruit flies example (Example 17-1), ex-
cept that now we are not asking whether any or some of the
samples differ from a given universe (50-50 sex ratio in that case).
Rather, we are now asking whether there are differences among
the samples themselves. Please keep in mind that we are still
dealing with two-outcome (yes-or-no, well-or-sick) problems.
Later we shall take up problems that are similar except that
the outcomes are “quantitative.”

If all four groups were drawn from the same universe, that
universe has an estimated rehabilitation rate of 17/20 + 10/20
+ 10/20 + 7/20 = 44/80 = 55/100, because the observed data
taken as a whole constitute our best guess as to the nature of the
universe from which they come—again, if they all come from
the same universe. (Please think this matter over a bit, because
it is important and subtle. It may help you to notice the ab-
sence of any other information about the universe from which
they have all come, if they have come from the same universe.)

Therefore, select twenty two-digit numbers for each group
from the random-number table, marking “yes” for each num-
ber “1-55” and “no” for each number “56-100.” Conduct a num-
ber of such trials. Then count the proportion of times that the
difference between the highest and lowest groups is larger than
the widest observed difference, the difference between P and
T (17-7 = 10). In Table 17-2, none of the first six trials shows
anywhere near as large a difference as the observed range of
10, suggesting that it would be rare for four treatments that
are “really” similar to show so great a difference. There is thus
reason to believe that P and T differ in their effects.
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Table 7-2
Results of Six Random Trials for Problem “Delinquents”

Trial P R S T Largest Minus Smallest

1 11 9 8 12 4

2 10 10 12 12 2

3 9 12 8 12 4

4 9 11 12 10 3

5 10 10 11 12 1

6 11 11 9 11 2

The strategy of the RESAMPLING STATS solution to “Delin-
quents” is similar to the strategy for previous problems in this
chapter. The benchmark (null) hypothesis is that the treatments
do not differ in their effects observed, and we estimate the
probability that the observed results would occur by chance
using the benchmark universe. The only new twist is that we
must instruct the computer to find the groups with the high-
est and the lowest numbers of rehabilitations.

Using RESAMPLING STATS we GENERATE four “treat-
ments,” each represented by 20 numbers, each number ran-
domly selected between 1 and 100. We let 1-55 = success, 56-100
= failure. Follow along in the program for the rest of the pro-
cedure:

REPEAT 1000
Do 1000 trials

GENERATE 20 1,100 a
The first treatment group, where “1-55” = success, “56-100” = failure

GENERATE 20 1,100 b
The second group

GENERATE 20 1,100 c
The third group

GENERATE 20 1,100 d
The fourth group

COUNT a <=55 aa
Count the first group’s successes

COUNT b <=55 bb
Same for second, third & fourth groups

COUNT c <=55 cc

COUNT d <=55 dd
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SUBTRACT aa bb ab
Now find all the pairwise differences in successes among the groups

SUBTRACT aa cc ac

SUBTRACT aa dd ad

SUBTRACT bb cc bc

SUBTRACT bb dd bd

SUBTRACT cc dd cd

CONCAT ab ac ad bc bd cd e
Concatenate, or join, all the differences in a single vector e

ABS e f
Since we are interested only in the magnitude of the difference, not
its direction, we take the ABSolute value of all the differences.

MAX f g
Find the largest of all the differences

SCORE g z
Keep score of the largest

END
End a trial, go back and repeat until all 1000 are complete.

COUNT z >=10 k
How many of the trials yielded a maximum difference greater than the ob-
served maximum difference?

DIVIDE k 1000 kk
Convert to a proportion

PRINT kk

Note: The file “4treat1” on the Resampling Stats software disk
contains this set of commands.

One percent of the experiments with randomly generated treat-
ments from a common success rate of .55 produced differences
in excess of the observed maximum difference (10).

An alternative approach to this problem would be to deal with
each result’s departure from the mean, rather than the largest
difference among the pairs. Once again, we want to deal with
absolute departures, since we are interested only in magnitude
of difference. We could take the absolute value of the differ-
ences, as above, but we will try something different here. Squar-
ing the differences also renders them all positive: this is a com-
mon approach in statistics.
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The first step is to examine our data and calculate this mea-
sure: The mean is 11, the differences are 6, 1, 1, and 4, the
squared differences are 36, 1, 1, and 16, and their sum is 54.
Our experiment will be, as before, to constitute four groups of
20 at random from a universe with a 55 percent rehabilitation
rate. We then calculate this same measure for the random
groups. If it is frequently larger than 54, then we conclude that
a uniform cure rate of 55 percent could easily have produced
the observed results. The program that follows also GENER-
ATES the four treatments by using a REPEAT loop, rather than
spelling out the GENERATE command 4 times as above. In
RESAMPLING STATS:

REPEAT 1000
Do 1000 trials

REPEAT 4
Repeat the following steps 4 times to constitute 4 groups of 20 and
count their rehabilitation rates.

GENERATE 20 1,100 a
Randomly generate 20 numbers between 1 and 100 and put
them in a; let 1-55 = rehabilitation, 56-100 no rehab.

COUNT a between 1 55 b
Count the number of rehabs, put the result in b.

SCORE b w
Keep track of the 4 rehab rates for the group of 20.

END
End the procedure for one group of 20, go back and repeat until all 4
are done.

MEAN w x
Calculate the mean

SUMSQRDEV w x y
Find the sum of squared deviations between group rehab rates (w)
and the overall rate (x).

SCORE y z
Keep track of the result for each trial.

CLEAR w
Erase the contents of w to prepare for the next trial.

END
End one experiment, go back and repeat until all 1000 are complete.

HISTOGRAM z
Produce a histogram of trial results.
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4 Treatments

sum of squared differences

From this histogram, we see that in only 1 percent of the cases
did our trial sum of squared differences equal or exceed 54,
confirming our conclusion that this is an unusual result. We
can have RESAMPLING STATS calculate this proportion:

COUNT z >= 54 k
Determine how many trials produced differences as great as those observed.

DIVIDE k 1000 kk
Convert to a proportion.

PRINT kk
Print the results.

Note: The file “4treat2” on the Resampling Stats software disk
contains this set of commands.

The conventional way to approach this problem would be with
what is known as a “chi-square test.”
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Example 17-3: Three-way Comparison

In a national election poll of 750 respondents in May, 1992,
George Bush got 36 percent of the preferences (270 voters), Ross
Perot got 30 percent (225 voters), and Bill Clinton got 28 per-
cent (210 voters) (Wall Street Journal, October 29, 1992, A16).
Assuming that the poll was representative of actual voting,
how likely is it that Bush was actually behind and just came
out ahead in this poll by chance? Or to put it differently, what
was the probability that Bush actually had a plurality of sup-
port, rather than that his apparent advantage was a matter of
sampling variability? We test this by constructing a universe
in which Bush is slightly behind (in practice, just equal), and
then drawing samples to see how likely it is that those samples
will show Bush ahead.

We must first find that universe—among all possible universes
that yield a conclusion contrary to the conclusion shown by
the data, and one in which we are interested—that has the
highest probability of producing the observed sample. With a
two-person race the universe is obvious: a universe that is
evenly split except for a single vote against “our” candidate
who is now in the lead, i.e. in practice a 50-50 universe. In that
simple case we then ask the probability that that universe
would produce a sample as far out in the direction of the con-
clusion drawn from the observed sample as the observed
sample.

With a three-person race, however, the decision is not obvi-
ous (and if this problem becomes too murky for you, skip over
it; it is included here more for fun than anything else). And
there is no standard method for handling this problem in con-
ventional statistics (a solution in terms of a confidence inter-
val was first offered in 1992, and that one is very complicated
and not very satisfactory to me). But the sort of thinking that
we must labor to accomplish is also required for any conven-
tional solution; the difficulty is inherent in the problem, rather
than being inherent in resampling, and resampling will be at
least as simple and understandable as any formulaic approach.

The relevant universe is (or so I think) a universe that is 35
Bush—35 Perot—30 Clinton (for a race where the poll indi-
cates a 36-30-28 split); the 35-35-30 universe is of interest be-
cause it is the universe that is closest to the observed sample
that does not provide a win for Bush (leaving out the
“undecideds” for convenience); it is roughly analogous to the
50-50 split in the two-person race, though a clear-cut argument
would require a lot more discussion. A universe that is split
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34-34-32, or any of the other possible universes, is less likely
to produce a 36-30-28 sample (such as was observed) than is a
35-35-30 universe, I believe, but that is a checkable matter. (In
technical terms, it might be a “maximum likelihood universe”
that we are looking for.)

We might also try a 36-36-28 universe to see if that produces a
result very different than the 35-35-30 universe.

Among those universes where Bush is behind (or equal), a
universe that is split 50-50-0 (with just one extra vote for the
closest opponent to Bush) would be the most likely to produce
a 6 percent difference between the top two candidates by
chance, but we are not prepared to believe that the voters are
split in such a fashion. This assumption shows that we are
bringing some judgments to bear from outside the observed
data.

For now, the point is not how to discover the appropriate bench-
mark hypothesis, but rather its criterion—which is, I repeat,
that universe (among all possible universes) that yields a con-
clusion contrary to the conclusion shown by the data (and in
which we are interested) and that (among such universes that
yield such a conclusion) has the highest probability of produc-
ing the observed sample.

Let’s go through the logic again: 1) Bush apparently has a 6
percent lead over the second-place candidate. 2) We ask if the
second-place candidate might be ahead if all voters were
polled. We test that by setting up a universe in which the
second-place candidate is infinitesimally ahead (in practice, we
make the two top candidates equal in our hypothetical uni-
verse). And we make the third-place candidate somewhere
close to the top two candidates. 3) We then draw samples from
this universe and observe how often the result is a 6 percent
lead for the top candidate (who starts off just below equal in
the universe).

From here on, the procedure is straightforward: Determine
how likely that universe is to produce a sample as far (or fur-
ther) away in the direction of “our” candidate winning. (One
could do something like this even if the candidate of interest
were not now in the lead.)

This problem teaches again that one must think explicitly about
the choice of a benchmark hypothesis. The grounds for the
choice of the benchmark hypothesis should precede the pro-
gram, or should be included as an extended comment within
the program.
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This program embodies the previous line of thought.

URN 35#1 35#2 30#3 univ 1= Bush, 2= Perot, 3=Clinton

REPEAT 1000

SAMPLE 750 univ samp
Take a sample of 750 votes

COUNT samp =1 bush
Count the Bush voters, etc.

COUNT samp =2 pero
Perot voters

COUNT samp =3 clin
Clinton voters

CONCAT pero clin others
Join Perot & Clinton votes

MAX others second
Find the larger of the other two

SUBTRACT bush second d
Find Bush’s margin over 2nd

SCORE d z

END

HISTOGRAM z

COUNT z >=46 m
Compare to the observed margin in the sample of 750 corresponding to a 6
percent margin by Bush over 2nd place finisher (rounded)

DIVIDE m 1000 mm

PRINT mm
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Samples of 750 Voters

Bush’s margin over 2nd

mm    =   0.018

When we run this program with a 36-36-28 split, we also get a
similar result—2.6 percent. That is, the analysis shows a prob-
ability of only 2.6 percent that Bush would score a 6 percent-
age point “victory” in the sample, by chance, if the universe
were split as specified. So Bush could feels reasonably confi-
dent that at the time the poll was taken, he was ahead of the
other two candidates.

Paired Comparisons With Counted Data

Example 17-4: The Pig Rations Again, But Comparing Pairs
of Pigs (Paired-Comparison Test) (Program “Pigs2”)

To illustrate how several different procedures can reasonably
be used to deal with a given problem, here is another way to
decide whether pig ration A is “really” better: We can assume
that the order of the pig scores listed within each ration group is
random—perhaps the order of the stalls the pigs were kept in,
or their alphabetical-name order, or any other random order
not related to their weights. Match the first pig eating ration A
with the first pig eating ration B, and also match the second
pigs, the third pigs, and so forth. Then count the number of
matched pairs on which ration A does better. On nine of twelve
pairings ration A does better, that is, 31.0 > 26.0, 34.0 > 24.0,
and so forth.



257Chapter 17—The Statistics of Hypothesis-Testing with Counted Data, Part 2

Now we can ask: If the two rations are equally good, how of-
ten will one ration exceed the other nine or more times out of
twelve, just by chance? This is the same as asking how often
either heads or tails will come up nine or more times in twelve
tosses. (This is a “two-tailed” test because, as far as we know,
either ration may be as good as or better than the other.) Once
we have decided to treat the problem in this manner, it is quite
similar to Example 15-1 (the first fruitfly irradiation problem).
We ask how likely it is that the outcome will be as far away as
the observed outcome (9 “heads” of 12) from 6 of 12 (which is
what we expect to get by chance in this case if the two rations
are similar).

So we conduct perhaps fifty trials as in Table 17-3, where an
asterisk denotes nine or more heads or tails.

Step 1. Let odd numbers equal “A better” and even numbers
equal “B better.”

Step 2. Examine 12 random digits and check whether 9 or
more, or 3 or less, are odd. If so, record “yes,” otherwise “no.”

Step 3. Repeat step 2 fifty times.

Step 4. Compute the proportion “yes,” which estimates the
probability sought.

The results are shown in Table 17-3.

In 8 of 50 simulation trials, one or the other ration had nine or
more tosses in its favor. Therefore, we estimate the probabil-
ity to be .16 (eight of fifty) that samples this different would
be generated by chance if the samples came from the same
universe.



258 Resampling: The New Statistics

Table 17-3
Results From Fifty Simulation Trials Of The Problem “Pigs2”

Heads” or “Tails” or “Heads” or “Tails” or
Odds” “Evems” Odds” “Evens”

Trial (Ration A) (Ration B) Trial (Ration A) (Ration B)

1 6 6 26 6 6

2 4 8 27 5 7

3 6 6 28 7 5

4 7 5 29 4 8

*5 3 9 30 6 6

6 5 7 *31 9 3

7 8 4 *32 2 10

8 6 6 33 7 5

9 7 5 34 5 7

*10 9 3 35 6 6

11 7 5 36 8 4

*12 3 9 37 6 6

13 5 7 38 4 8

14 6 6 39 5 7

15 6 6 40 8 4

16 8 4 41 5 7

17 5 7 42 6 6

*18 9 3 43 5 7

19 6 6 44 7 5

20 7 5 45 6 6

21 4 8 46 4 8

*22 10 2 47 5 7

23 6 6 48 5 7

24 5 7 49 8 4

*25 3 9 50 7 5

Now for a RESAMPLING STATS program and results. “Pigs2”
is different from “Pigs1” in that it compares the weight-gain
results of pairs of pigs, instead of simply looking at the rankings
for weight gains.

The key to “Pigs2” is the GENERATE statement. If we assume
that ration A does not have an effect on weight gain (which is
the “benchmark” or “null” hypothesis), then the results of the
actual experiment would be no different than if we randomly
GENERATE numbers “1” and “2” and treat a “1” as a larger
weight gain for the ration A pig, and a “2” as a larger weight
gain for the ration B pig. Both events have a .5 chance of oc-
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curring for each pair of pigs because if the rations had no ef-
fect on weight gain (the null hypothesis), ration A pigs would
have larger weight gains about half of the time. The next step
is to COUNT the number of times that the weight gains of
one group (call it the group fed with ration A) were larger than
the weight gains of the other (call it the group fed with ration
B). The complete program follows:

REPEAT 1000
Do 1000 trials

GENERATE 12 1,2 a
Generate randomly 12 “1”s and “2”s, put them in a. This represents
12 “pairings” where “1” = ration a “wins,” “2” = ration b = “wins.”

COUNT a =1 b
Count the number of “pairings” where ration a won, put the result
in b.

SCORE b z
Keep track of the result in z

END
End the trial, go back and repeat until all 100 trials are complete.

COUNT z >= 9 j
Determine how often we got 9 or more “wins” for ration a.

COUNT z <= 3 k
Determine how often we got 3 or fewer “wins” for ration a.

ADD j k m
Add the two together

DIVIDE m 100 mm
Convert to a proportion

PRINT mm
Print the result.

Note: The file “pigs2” on the Resampling Stats software disk
contains this set of commands.

Notice how we proceeded in Examples 15-6 and 17-4. The data
were originally quantitative—weight gains in pounds for each
pig. But for simplicity we classified the data into simpler
counted-data formats. The first format (Example 15-6) was a
rank order, from highest to lowest. The second format (Ex-
ample 17-4) was simply higher-lower, obtained by randomly
pairing the observations (using alphabetical letter, or pig’s stall
number, or whatever was the cause of the order in which the
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data were presented to be random). Classifying the data in ei-
ther of these ways loses some information and makes the sub-
sequent tests somewhat cruder than more refined analysis
could provide (as we shall see in the next chapter), but the loss
of efficiency is not crucial in many such cases. We shall see
how to deal directly with the quantitative data in Chapter 18.

Example 17-5: Merged Firms Compared to Two Non-Merged
Groups

In a study by Simon, Mokhtari, and Simon (1996), a set of 33
advertising agencies that merged over a period of years were
each compared to entities within two groups (each also of 33
firms) that did not merge; one non-merging group contained
firms of roughly the same size as the final merged entities, and
the other non-merging group contained pairs of non-merging
firms whose total size was roughly the same as the total size
of the merging entities.

The idea beind the matching was that each pair of merged firms
was compared against

a) a pair of contemporaneous firms that were roughly the same
size as the merging firms before the merger, and

b) a single firm that was roughly the same size as the merged
entity after the merger.

Here (Table 17-4) are the data (provided by the authors):
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Table 17-4
Revenue Growth In Year 1 Following Merger

Set # Merged Match1 Match2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

-0.20000
-0.34831
0.07514
0.12613
-0.10169
0.03784
0.11616
-0.09836
0.02137
-0.01711
-0.36478
0.08814
-0.26316
-0.04938
0.01146
0.00975
0.07143
0.00183
0.00482
-0.05399
0.02270
0.05984
-0.05987
-0.08861
-0.02483
0.07643
-0.00170
-0.21975
0.38237
-0.00676
-0.16298
0.19182
0.06116

0.02564
-0.12500
0.06322
-0.04199
0.08000
0.14907
0.15183
0.03774
0.07661
0.28434
0.13907
0.03874
0.05641
0.05371
0.04805
0.19816
0.42083
0.07432
-0.00707
0.17152
0.02788
0.04857
0.02643
-0.05927
-0.01839
0.01262
-0.04549
0.34309
0.22105
0.25494
0.01124
0.15048
0.17045

0.000000
0.080460
-0.023121
0.164671
0.277778
0.430168
0.142857
0.040000
.0111111
0.189139
0.038869
0.094792
0.045139
0.008333
0.094817
0.060929
-0.024823
0.053191
0.050083
0.109524
-0.022456
0.167064
0.020676
0.077067
0.059633
0.034635
0.053571
0.042789
0.115773
0.237047
0.190476
0.151994
0.093525

Comparisons were made in several years before and after the
mergings to see whether the merged entities did better or
worse than the non-merging entities they were matched with
by the researchers, but for simplicity we may focus on just one
of the more important years in which they were compared—
say, the revenue growth rates in the year after the merger.
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Here are those average revenue growth rates for the three
groups:

Year’s rev. growth

MERGED -0.0213

MATCH 1 0.092085

MATCH 2 0.095931

We could do a general test to determine whether there are dif-
ferences among the means of the three groups, as was done in
the “Differences Among 4 Pig Rations” problem (chapter 18).
However, we note that there may be considerable variation
from one matched set to another – variation which can obscure
the overall results if we resample from a large general urn.

Therefore, we use the following resampling procedure that
maintains the separation between matched sets by converting
each observation into a rank (1, 2 or 3) within the matched set.

Here (Table 17-5) are those ranks:

Table 17-5
Ranked Within Matched Set (1 = worst, 3 = best)

Set # Merged Match1 Match2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1

1

3

2

1

1

1

1

1

1

1

2

1

1

1

1

2

1

3

2

2

1

2

3

3

2

2

2

3

1

3

3

2

3

3

3

2

3

1

3

3

2

2

3

3

3

2

3

2

2

3

2

1

2
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Set # Merged Match1 Match2

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

2

1

2

2

1

1

1

3

2

1

3

1

1

3

1

1

3

2

2

3

2

2

1

1

3

2

3

2

1

3

3

2

3

3

2

3

3

2

3

2

1

2

3

2

2

These are the average ranks for the three groups (1 = worst, 3
= best):

MERGED 1.45

MATCH 1 2.18

MATCH 2 2.36

Is it possible that the merged group received such a low (poor)
average ranking just by chance? The null hypothesis is that
the ranks within each set were assigned randomly, and that
“merged” came out so poorly just by chance. The following
procedure simulates random assignment of ranks to the
“merged” group:

1. Randomly select 33 integers between “1” and “3” (inclu-
sive).

2. Find the average rank & record.

3. Repeat steps 1 and 2, say, 1000 times.

4. Find out how often the average rank is as low as 1.45
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Here’s a RESAMPLING STATS program (“merge.sta”):

REPEAT 1000

GENERATE 33 (1 2 3) ranks

MEAN ranks ranksum

SCORE ranksum z

END

HISTOGRAM z

COUNT z <=1.45 k

DIVIDE k 1000 kk

PRINT kk

Result: kk = 0

Interpretation: 1000 random selections of 33 ranks never pro-
duced an average as low as the observed average. Therefore
we rule out chance as an explanation for the poor ranking of
the merged firms.

Exactly the same technique might be used in experimental
medical studies wherein subjects in an experimental group are
matched with two different entities that receive placebos or
control treatments.

For example, there have been several recent three-way tests of
treatments for depression: drug therapy versus cognitive
therapy versus combined drug and cognitive therapy. If we
are interested in the combined drug-therapy treatment in par-
ticular, comparing it to standard existing treatments, we can
proceed in the same fashion as in the merger problem.



265Chapter 17—The Statistics of Hypothesis-Testing with Counted Data, Part 2

We might just as well consider the real data from the merger
as hypothetical data for a proposed test in 33 triplets of people
that have been matched within triplet by sex, age, and years
of education. The three treatments were to be chosen randomly
within each triplet.

Assume that we now switch scales from the merger data, so
that #1 = best and #3 = worst, and that the outcomes on a se-
ries of tests were ranked from best (#1) to worst (#3) within
each triplet. Assume that the combined drug-and-therapy re-
gime has the best average rank. How sure can we be that the
observed result would not occur by chance? Here are the data
from the merger study, seen here as Table 17-5-b:

Table 17-5-b
Ranked Therapies Within Matched Patient Triplets

(hypothetical data identical to merger data) (1 = best, 3 = worst)

Triplet # Therapy Only Combined Drug Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

1
1
3
2
1
1
1
1
1
1
1
2
1
1
1
1
2
1
2
1
2
2
1
1
1
3
2
1
3
1
1
3
1

3
2
2
1
2
3
3
2
2
2
3
1
3
3
2
3
3
3
1
3
1
1
3
2
2
1
1
3
2
3
2
1
3

2
3
1
3
3
2
2
3
3
3
2
3
2
2
3
2
1
2
3
2
3
3
2
3
3
2
3
2
1
2
3
2
2
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These are the average ranks for the three groups (“1” = best,
“3”= worst):

Combined 1.45

Drug 2.18

Therapy 2.36

In these hypothetical data, the average rank for the drug and
therapy regime is 1.45. Is it likely that the regimes do not
“really” differ with respect to effectiveness, and that the drug
and therapy regime came out with the best rank just by the
luck of the draw? We test by asking, “If there is no difference,
what is the probability that the treatment of interest will get
an average rank this good, just by chance?”

We proceed exactly as with the solution for the merger prob-
lem (see above).

In the above problems, we did not concern ourselves with
chance outcomes for the other therapies (or the matched firms)
because they were not our primary focus. If, in actual fact, one
of them had done exceptionally well or poorly, we would have
paid little notice because their performance was not the object
of the study. We needed, therefore, only to guard against the
possibility that chance good luck for our therapy of interest
might have led us to a hasty conclusion.

Suppose now that we are not interested primarily in the com-
bined drug-therapy treatment, and that we have three treat-
ments being tested, all on equal footing. It is no longer suffi-
cient to ask the question “What is the probability that the com-
bined therapy could come out this well just by chance?” We
must now ask “What is the probability that any of the thera-
pies could have come out this well by chance?” (Perhaps you
can guess that this probability will be higher than the prob-
ability that our chosen therapy will do so well by chance.)

Here is a resampling procedure that will answer this question:

1. Put the numbers “1”, “2” and “3” (corresponding to ranks)
in an urn

2. Shuffle the numbers and deal them out to three locations
that correspond to treatments (call the locations “t1,” “t2,” and
“t3”)

3. Repeat step two another 32 times (for a total of 33 repeti-
tions, for 33 matched triplets)

4. Find the average rank for each location (treatment.
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5. Record the minimum (best) score.

6. Repeat steps 2-4, say, 1000 times.

7. Find out how often the minimum average rank for any treat-
ment is as low as 1.45

NUMBERS (1 2 3) a
Step 1 above

REPEAT 1000
Step 6

REPEAT 33
Step 3

SHUFFLE a a
Step 2

SCORE a t1 t2 t3
Step 2

END
Step 3

MEAN t1 tt1
Step 4

MEAN t2 tt2
MEAN t3 tt3

CLEAR t1
Clear the vectors where we’ve stored the ranks for this trial (must do
this whenever we have a SCORE statement that’s part of a “nested”
repeat loop)

CLEAR t2

CLEAR t3

CONCAT tt1 tt2 tt3 b
Part of step 5

MIN b bb
Part of step 5

SCORE bb z
Part of step 5

END
Step 6

HISTOGRAM z

COUNT z <=1.45 k
Step 7

DIVIDE k 1000 kk

PRINT kk
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Interpretation: 1000 random shufflings of 33 ranks, apportioned
to three “treatments,” never produced for the best treatment
in the three an average as low as the observed average, there-
fore we rule out chance as an explanation for the success of
the combined therapy.

An interesting feature of the mergers (or depression treatment)
problem is that it would be hard to find a conventional test
that would handle this three-way comparison in an efficient
manner. Certainly it would be impossible to find a test that
does not require formulae and tables that only a talented pro-
fessional statistician could manage satisfactorily, and even s/
he is not likely to fully understand those formulaic procedures.

Result: kk = 0
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Endnotes

Technical note: Some of the tests introduced in this chapter
are similar to standard nonparametric rank and sign tests. They
differ less in the structure of the test statistic than in the way
in which significance is assessed (the comparison is to mul-
tiple simulations of a model based on the benchmark hypoth-
esis, rather than to critical values calculated analytically).

1. If you are very knowledgeable, you may do some in-between
figuring (with what is known as “Bayesian analysis”), but leave
this alone unless you know well what you are doing.

2. The data for this example are based on W. J. Dixon and F. J.
Massey (1969, p. 117), who offer an orthodox method of han-
dling the problem with a t-test.


